Strategic Thinking: A New Materials Economy


The throwaway economy that has been evolving over the last half-century is an aberration, now itself headed for the junk heap of history, says Lester Brown. The challenge is to redesign the materials economy so that it is compatible with nature.

In nature, one-way linear flows do not long survive. Nor, by extension, can they long survive in the expanding economy that is a part of the earth’s ecosystem. The challenge is to redesign the materials economy so that it is compatible with nature. The throwaway economy that has been evolving over the last half-century is an aberration, now itself headed for the junk heap of history.

The potential for reducing materials use has been examined over the last decade in three specific studies. The first–Factor Four, by Ernst von Weizsäcker, an environmentalist and leader in the German Bundestag–argued that modern industrial economies could function very effectively with a level of virgin raw material use only one fourth that of today. This was followed a few years later by research from the Factor Ten Institute organized in France under the leadership of Friedrich Schmidt-Bleek. It concluded that resource productivity can be raised by a factor of 10, which is well within the reach of existing technology and management, given the appropriate policy incentives.

In 2002, American architect William McDonough and German chemist Michael Braungart teamed up to coauthor a book entitled Cradle to Cradle: Remaking the Way We Make Things. Waste and pollution are to be avoided at any cost. “Pollution,” says McDonough, “is a symbol of design failure.”

One of the keys to reducing materials use is recycling steel, the use of which dwarfs that of all other metals combined. Steel use is dominated by the automobile, household appliance, and construction industries. Among steel-based products in the United States, automobiles are the most highly recycled. Cars today are simply too valuable to be left to rust in out-of-the-way junkyards.

The recycling rate for household appliances is estimated at 90 percent. For steel cans, the U.S. recycling rate in 2003 of 60 percent can be traced in part to municipal recycling campaigns launched in the late 1980s.

In the United States, roughly 71 percent of all steel produced in 2003 was from scrap, leaving 29 percent to be produced from virgin ore. Steel recycling started climbing more than a generation ago with the advent of the electric arc furnace, a method of producing steel from scrap that uses only one third the energy of that produced from virgin ore. And since it does not require any mining, it completely eliminates one source of environmental disruption. In the United States, Italy, and Spain, electric arc furnaces used for recycling now account for half or more of all steel production.

It is easier for mature industrial economies with stable populations to get most of their steel from recycled scrap, simply because the amount of steel embedded in the economy is essentially fixed. The number of household appliances, the fleet of automobiles, and the stock of buildings is increasing little or not at all. For countries in the early stages of industrialization, however, the creation of infrastructure–whether factories, bridges, high-rise buildings, or transportation, including automobiles, buses, and rail cars–leaves little steel for recycling.

In the new economy, electric arc steel minimills that efficiently convert scrap steel into finished steel will largely replace iron mines. Advanced industrial economies will come to rely primarily on the stock of materials already in the economy rather than on virgin raw materials. For metals such as steel and aluminum, the losses through use will be minimal. With the appropriate policies, metal can be used and reused indefinitely.

In recent years, the construction industry has begun deconstructing old buildings, breaking them down into their component parts so they can be recycled and reused. For example, when PNC Financial Services in Pittsburgh took down a seven-story downtown building, the principal products were 2,500 tons of concrete, 350 tons of steel, 9 tons of aluminum, and foam ceiling tiles. The concrete was pulverized and used to fill in the site, which is to become a park. The steel and aluminum were recycled. And the ceiling tiles went back to the manufacturer to be recycled. This recycling saved some $200,000 in dump fees. By deconstructing a building instead of simply demolishing it, most of the material in it can be recycled.

Lester Brown, founder of the Earth Policy Institute, is author of Plan B 2.0: Rescuing a Planet Under Stress and a Civilization in Trouble.

You can return to the main Market News page, or press the Back button on your browser.