In order to really understand how pyrolysis and gasification work, the first thing to understand is that pyrolysis and gasification are technically intermediary processes that change one state of matter into another form of matter. How this is done varies depending on the feedstock, heat, residence time, amount of oxygen, and pressure within a specifically designed reactor. Both pyrolysis and gasification are very good at deconstructing solid materials such as waste plastics, scrap tires, and municipal solid wastes by thermally breaking down the molecular bonds between the various states of matter following the laws of thermodynamics.
The fundamental difference between a pyrolysis process and a gasification process is oxygen. Pyrolysis produces 3 products: solid, liquid, and gas. In order for a good pyrolysis reaction to occur, pyrolysis typically has less than 1% oxygen within the reactor. Gasification on the other hand typically has between 20-30% oxygen which aids in the production of syngas, without the production of any liquid, and very low amounts of solids which are typically vitrified. In practical terms, single-step transformations to a finished product(s) are very difficult to achieve with any form of perfection and this applies to both pyrolysis and gasification processes.
When breaking down materials into their core molecular structure, atoms like to take the easiest path of recombing, and it’s critical that the users of these technologies understand that no two paths are identical and that each process needs to have some form of polishing/finishing and/or upgrading technology as a secondary (or maybe a third) step to produce the ideal product of desire, and this result is also a function of the pyrolysis and/or gasification technology (reactor) used.
To learn more about pyrolysis and gasification please visit this section of our website » GO.
In order to produce high-value products, the resulting products derived from a pyrolysis and/or gasification process must undergo some form of refining, purification, distillation, and de-agglomeration. Once molecules within the feedstock are broken down, a process of reorganizing these molecules is necessary so that recovered molecules can be put back together and/or combined into the right structure to produce the desired end products. This process allows for the production of specific end products; this is also done in a continuous process so that product consistency can be achieved on a consistent quality basis, this is science and chemical engineering.
There are no truly single-step processes that operate commercially, ie take a product of mixed ingredients (non-homogenous nature) and produce a singular product such as pure carbon or singular chain hydrocarbon. The KleanTeam specializes in the integration of various commercialized processes to achieve the single-step transformation by combining several steps into a larger continuous single process known as a system. Klean Industries uses highly specialized know-how, technologies, and process controls that are combined, to achieve the desired end product results.
In this section of our website, we review some of the unique features and projects the KleanTeam has undertaken over the past six decades of designing and building thermal processing plants using “unconventional” feedstocks such as waste plastics, scrap tires, and municipal solid wastes along with the resulting finished end products. We are leaders in thinking outside of the landfill and incineration scenario. We believe Klean’s solutions and technologies do this better than any other vendors on the market today.
Converting waste tyres into road fuels and quality recovered carbon black for new tyre manufacturing.
[Learn More >> GO]Turning low-value pyrolysis char into high-quality recovered carbon black fillers for new rubber and plastic product manufacturing.
[Learn More >> GO]Converting recovered carbon black into battery-grade graphite for vehicle electrification.
[Learn More >> GO]We support our client’s through our quoting and project development by providing a wealth of information and specifications about Klean Industries systems and technologies.
©2024 All Rights Reserved. Terms of Use