10 Everyday Technologies That Can Change the World

A garden hose, a tin can, duct tape, metal piping, kitchen
cleaner, and gasoline: That is all television icon MacGyver needed to make a
flame-thrower to ward off a swarm of killer ants. In the real world,
technologies that are affordable and practical are not so simple to create, but
they can make a huge impact on people’s lives. Instead of calling on complex solutions (reliant on engines and
imported resources) for low-tech problems (such as
cooking and lighting), some researchers are now developing what they call “confluent”
technologies—ones that are effective, affordable, and sustainable for use in
the developing world. Here’s a look at the latest breakthroughs:

Energy in a Bucket of Dirt

Who needs nickel cadmium batteries or coal plants
for electricity when you have soil? A Harvard team of faculty and African
students have tapped into soil-dwelling microbes in order to provide
electricity for families in Tanzania. When the microbes found in the soil
digest organic materials, they naturally produce a small current, which can be
harnessed with a simple device consisting of two electrodes and a small circuit
board. One trash-barrel-sized unit filled with soil can produce enough
electricity to light two bedrooms for a decade or more, says Harvard biology
professor Peter Girguis.
While each unit currently costs about $50, the team is testing new materials
that would drive the price down to $7.

2 Micro-Hydroelectric Power
Hilly land streaked with small streams makes an ideal spot for micro-hydroelectric power generators, each of which requires a meager water flow of just three gallons per second to turn. (To put this in perspective, the Mississippi’s average flow at New Orleans is about 4.4 million gallons per second.) The Appropriate
Infrastructure Development Group
(AIDG) has helped to build three systems
in Guatemala, and more communities are now saving up money for local

3 Biodigesters
At the end of Back
to the Future
, a little bit of garbage is all Doc Brown needs to fuel his
DeLorean time machine. Biodigesters won’t quite generate “1.21
jigawatts” of power (as Doc’s Mr. Fusion device seemed to), but they can
create fuel for heating, cooking, and electricity while reducing waste and water
contamination. In the salchicha-type biodigester (salchicha means “sausage” in
Spanish), bacteria break down waste in a 15-to-30-foot-long polyethylene tube
and release methane, which is captured and piped to a stove. The digested waste
can then be used as a fertilizer. Biodigesters have been around since the
1870s, but current efforts focus on producing them on a larger scale. An
award-winning system installed in Rwandan prisons reduced the need for firewood
by half.

4  Wind
Power on $2 a Day

Who said wind turbines have to spin? Shawn Frayne,
founder of Humdinger Wind Energy,
developed a turbine-less generator that harnesses energy from the rapid wind-induced
vibration (50 cycles per second) of a seven-to-ten-foot flap of taffeta fabric.
This is the same phenomenon—aeroelastic flutter—that civil engineers try to
eliminate so bridges don’t
sway in the wind
, and on a small scale, it greatly increases the efficiency
of capturing power from wind for a very small cost, says Frayne. “For
people making a dollar or two a day, it could be in the realm of possibility to
have electricity,” says Peter Haas of AIDG, who is helping Frayne test the
generators in Guatemala. Depending on wind conditions, the generators can be
positioned to power efficient lights in a few rooms on small electrical grids.
Frayne hopes to make the product available within a few years.

Sunlight Stored in LEDs

In rural Indian homes,
kerosene lamps are ubiquitous, posing health concerns from fumes as well as a
fire risk. Solar-charged lights designed by Patrick Walsh, founder of
Greenlight Planet, are one solution to this problem. The lights run for four
hours on their brightest setting after charging in the sun all day. The lights
also reduce fuel costs for families and pay for themselves in just one year.
After testing the market with 20 lamps, Walsh is now scaling up production.

6  Solar
Water Heater

water heaters are generally expensive (they can cost $400–$1,000), barring easy access to hot water for many who are far from an
electric grid. But engineer Ashok Gadgil at the University of California,
Berkeley, working with AIDG, cut back on materials and came up with a solar
heater that costs $100. It can produce 26 gallons of water warmed to 104
degrees Fahrenheit by 4 p.m. each day—enough for four showers. Tests are
ongoing in Guatemala, after which the team plans to fine-tune the design and
begin distribution.

Pedal-Powered Grid

People who live off the grid
in rural corners of the world may soon have a new source of energy: 12-volt
batteries charged by pedaling. Using a simple alternator, six hours of pedaling
can create and store enough electrical energy in batteries to light about six
homes for 30 days (in areas where people use less electricity than in the
U.S.). Dissigno, the San Francisco–based company that distributes the devices,
has one prototype up and running in Haiti and next hopes to install a “grid”
in Tanzania connected by a network of pedalers instead of power lines.

Sugarcane Charcoal

In Haiti, most people cook using charcoal made
from wood, but the country is now 98 percent deforested due largely to mismanagement
of resources. MIT students and lecturer Amy Smith turned to widely available bagasse, the stalks of sugarcane plants
left after squeezing the sugar out, and created a charcoal replacement by
burning, compressing, and mixing the material with a binding agent. The team is
currently looking to train prospective entrepreneurs interested in producing
and distributing the product.

Irrigation by Foot

African farmers rely on seasonal rainfall, having no other means of irrigation for crops. So
Martin Fisher, the CEO of KickStart International, came up with a device you
can pump with your feet that pulls water from 30 feet underground with enough pressure to irrigate up to two acres of land.
This enables more frequent harvests of high-value crops like vegetables rather
than grains. In Africa, more than 65,000 such pumps are currently in use.
Fisher won the 2008 Lemelson-MIT
Award for Sustainability
for the invention.

Chlorine from Salt

For the
roughly 1.2 billion people lacking clean water, a bit of chlorine could go a
long way toward providing it. Using two ounces of salt water and some muscle,
University of Iowa engineering professor Craig Just can make enough bleach to
kill the disease-causing microorganisms in five gallons of water. His trick: a
hand-cranked device that generates electricity to zap water molecules,
splitting them and joining them with chlorine atoms from salt. Just and his
students plan to test a prototype in Ghana and Honduras next year.

You can return to the main Market News page, or press the Back button on your browser.